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Abstract

Adaptive Mesh Refinement (AMR) calculations carried out on structured meshes play an
exceedingly important role in several areas of science and engineering. This is so not just
because AMR techniques allow us to carry out calculations very efficiently but also because
they model very precisely the multi-scale fashion in which nature itself works. Many AMR
applications are also amongst the most computationally intensive calculations undertaken
making it necessary to use parallel supercomputers for their solution. While class library-based
approaches are being attempted for parallel AMR we point out here that recent advances in
the Fortran 90/95 standard and the OpenMP standard now make it possible to carry out
highly parallel AMR calculations using language-based approaches. The language-based ap-
proaches offer several advantages over library-based approaches, the two principal ones being
portability across parallel platforms and the best possible utilization of Distributed Shared
Memory (DSM) hardware on machines that have such hardware. They also free up the ap-
plications scientist from being constrained by the static features of a class library. The choice
of Fortran also ensures maximal reuse of pre-existing Fortran 77 applications and full Fortran
77-based processing efficiency on each computational node. Our implementation of the ideas
presented here in the first author’s RIEMANN framework essentially permits any serial,
uniform grid, stencil-based Fortran code to be turned into a parallel AMR code. In this paper
we first describe our strategy for using Fortran 90 in an object-oriented fashion. This permits
AMR applications to be expressed in terms of familiar abstractions that are natural to the
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process of solving AMR hierarchies. We then describe the OpenMP features that are useful for
parallel processing of AMR hierarchies in a load balanced fashion on multiprocessors. The
automatic, parallel regridding of AMR hierarchies is also described. We then present a very
efficient load balancer and show how it is to be used for load balanced solution of AMR
hierarchies. Our load balancer is extremely general and should also see use in other disciplines.
We follow this up with the application of the parallel AMR techniques developed here to the
solution of elliptic and hyperbolic problems. For our elliptic problem we choose parallel, self-
adaptive multigrid as an example. For our hyperbolic problem we choose time-dependent
MHD as an example. In either case illustrative information is given about the adaptive pro-
cessing of these systems. We also provide detailed scalability studies for both the above-
mentioned problems which show that our methods scale extremely well up to several hundreds
of processors. © 2001 Elsevier Science B.V. All rights reserved.

Keywords.: Parallel adaptive mesh refinement; Fortran 90; Distributed shared memory; Load balancer;
Finite difference methods

1. Introduction

For a long time now computational physicists, mathematicians and engineers
have seen the value of analyzing and solving problems from a multi-scale point of
view. The first concerted exposition on the value of adopting a multi-scale, adaptive
viewpoint for scientific computations emerges in the work of Brandt [24]. He also
formulated the multigrid method which is one of the preferred ways of solving el-
liptic problems. Ever since the early work of Mulder and vanLeer [46] there has also
been an increasing realization that techniques drawn from multigrid methods have
great utility in solving certain classes of hyperbolic problems. Early work on
adaptive techniques was done by Berger and Oliger [22] who showed the advantage
of automatically putting adaptively refined computational meshes in regions of the
flow that needed additional resolution. This allowed them to capture flow features
that could not be captured on a uniform mesh. They also coined the phrase Adaptive
Mesh Refinement (AMR) for their method of automatically putting meshes in re-
gions where higher resolution was needed. Berger and Colella [21] subsequently
showed that these techniques could be extended to the Euler equations which are
capable of admitting discontinuous solutions. AMR techniques instantly became
popular in several fields of science and engineering not just because they were
computationally efficient and enabled people to do computations with substantially
fewer mesh points but also because they were better able to model the multi-scale
way in which nature itself works.

Berger and Colella [21] showed that solution of the Euler equations using higher
order Godunov schemes, see vanLeer [59], could benefit from AMR techniques.
Since then, there have been several new advances that make AMR techniques even
more important in science and engineering. Thus, higher order Godunov schemes
with low dissipation and good multidimensional propagation of flow features have
been designed by Jiang and Shu [40], Cockburn and Shu [30] and Balsara and Shu
[16]. Higher order Godunov schemes have also been designed for several other hy-
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perbolic systems that are useful in various fields of science. To take computational
astrophysics as an example, Balsara’s RIEMANN framework utilizes higher order
Godunov schemes not just for solving the equations of hydrodynamics but also other
hyperbolic systems that are central to computational astrophysics. Thus it solves the
equations of relativistic hydrodynamics, see [5]; non-relativistic magnetohydrody-
namics (MHD), see [6,7,17,18,54]; relativistic MHD, see [19]; radiation hydrody-
namics, see [8—10]; and radiation MHD, see [11,12]. Recently Balsara [13] has shown
that very efficient discrete ordinates methods for multidimensional radiative transfer
can be formulated by using ideas drawn from genuinely multidimensional upwind
schemes. The consistent use of higher order Godunov methodology in the RIE-
MANN framework offers two major advantages. First, it yields schemes of high
accuracy and low dissipation that are substantially superior to alternative methods,
see [36,56-58]. Second, it gives one a consistent conceptual and computational
framework so that all these hyperbolic systems may benefit from AMR techniques.
The case of MHD is particularly interesting since Balsara and Spicer [17] have shown
that the magnetic field can be made to satisfy a divergence-free constraint within the
context of higher order Godunov schemes if the magnetic field is face-centered rather
than zone-centered. Similar considerations apply to electromagnetics, see [61]. The
application of AMR techniques to MHD requires an extension of the Berger and
Colella [21] AMR strategy which has been worked out by Balsara and will be cat-
alogued in a later paper. The present paper, therefore, catalogues the extension of the
RIEMANN framework to make it a parallel AMR framework. Higher order
Godunov techniques have also been used in semiconductor simulation, see [28] and
computational biology, see [27] and for solving the equations for dilute gases, see
[35], so that all those fields of science should also be able to benefit from parallel
AMR techniques. Another key advance that makes AMR very useful in engineering
problems is the extension of AMR techniques to handle flow problems in geomet-
rically complex domains. Thus Chiang et al. [29], Pember et al. [50], and Aftosmis
et al. [1,2] have developed various versions of cut-cell formulations that allow
adaptive CFD techniques to be extended to problems that have complex geometry.
Likewise, body-fitted meshes have been used in composite mesh frameworks to ar-
rive at good meshes for flow in complex engineering geometries, see Brown et al. [25].
All of these areas would also benefit from parallel AMR techniques.

Early AMR calculations were carried out on serial computers. As computers
evolved, it became evident that the most powerful computers would be massively
parallel computers. A variety of techniques emerged to do large computations on
structured and unstructured meshes on these parallel computers. Some of the ap-
plications that used big single grids could achieve very good parallel scalability.
However, it became increasingly apparent that applications that used structured
AMR techniques could not be efficiently parallelized. As a result, various C++ class
library-based approaches emerged which purported to help in the parallelization of
AMR applications. The two most prominent examples include the Overture class
library [52] and the DAGH class library [49]. As of this writing, the library-based
approaches have not demonstrated real, highly parallel performance on any
interesting enough class of AMR applications. Contemporaneously with the



40 D.S. Balsara, C.D. Norton | Parallel Computing 27 (2001) 37-70

above-mentioned class library approaches, parallel language definitions have also
emerged. The two most prominent examples include the HPF-2 standard, see [26,37],
and the OpenMP standard, see [45,48]. These standards have also been extended to
allow them to support increasingly complex applications. Commercial compilers that
implement these standards on a wide variety of parallel architectures have also been
improving. The present paper is intended to show that modern parallelizing com-
pilers such as OpenMP compilers or HPF-2 standard conforming compilers have
reached the level of maturity and sophistication that is needed to support large,
complex AMR applications in a natural and easily expressible way. Because an
HPF-2 conforming compiler was not available at the time of this writing we have
focussed on SGI’s Fortran 90 compiler that implements the OpenMP standard on
the Silicon Graphics’ Origin 2000.

The applications that seek to benefit from adaptive techniques exist. They are
most often available in the form of Fortran 77 codes that solve a given computa-
tional problem on a single structured grid. These codes have evolved over a long
period of time and represent the effort of many individuals. Some of these codes can
be very large and there is often no willingness to convert these codes to a different
language. Moreover, a significant amount of effort has often been invested in making
such codes perform well on a variety of target architectures. Early AMR compu-
tations on serial machines sought to draw on such codes and use them as building
blocks for an adaptive calculation. The code that sought to provide the adaptivity
then focussed on building a consistent AMR hierarchy and provide consistent
transfer of data across the different refined patches in the AMR hierarchy. Unlike
modern class library approaches, all aspects of that AMR code were transparently
visible to the scientist who wrote the single grid application. Thus s/he could easily
modify that AMR code to suit the actual application rather than having to modify
the application to fit within an AMR class library. The real computational problem in
doing parallel, structured adaptive mesh refinement consists of finding a way to do all
the functions of an AMR code in a scalable fashion in a parallel setting whilst at the
same time:

o retaining the simplicity with which the serial AMR algorithms were expressed,

o permitting maximal reuse of existing Fortran 77 code.

What makes this hard to do in a parallel setting is that AMR applications require
two-way communication between fine grid and coarse grid levels. Thus, taking the
Berger and Colella [21] AMR algorithm as an example, when the fine grid and coarse
grid levels synchronize in time the solution from the fine grids is transferred to the
coarse grids that overlie the fine grids. At the interface between coarse and fine grids
a flux correction step is also applied to ensure conservation. The fine grids, on the
other hand, need to draw on the coarse grid solution to obtain consistent boundary
information. Also, as the solution evolves in time, new fine grids have to be built.
The new fine grids then obtain their solution from the old fine grids and also from
the coarse grids. The old set of fine grids are then deleted. The superficial similarity
between the construction and deletion of grids and constructors and destructors in
C++ had spawned the belief that the use of C++ classes is essential for parallel
AMR. The present paper draws attention to the fact that modern Fortran 90 can be
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used in a way that permits just as elegant construction, destruction and manipulation

of grids. Moreover, since parallelizing Fortran 90 compilers exist and yield excellent

scalable performance, they can be used to obtain very good parallel performance for

AMR applications.

C++ based approaches for doing AMR do enable proper data and functional
encapsulation. However, the disadvantages of using C++ include the following:

1. Improving the on-processor performance of C++ is still a research issue, while
that is not the case for Fortran. This is especially ironic since most applications
that need parallel AMR tend to be applications that need the highest levels of per-
formance that one can obtain from a parallel supercomputer.

2. The majority of large scientific applications, which tend to be in Fortran, use large
multi-dimensional arrays which are stored in the computer’s memory in orderings
that are inconsistent between Fortran and C++.

3. C++ libraries for AMR tend to be written by one set of people while they tend to
get used in applications by another set of people. Increasingly, there tends to be
little or no overlap between the former set of people and the latter set of people.
Thus there are always conditions and situations that the library builder has not
foreseen or provided for which the application, nevertheless, needs. Furthermore,
the applications scientists who must resort to interfacing their Fortran codes with
C++ libraries cannot modify the library or safely use C++ objects with Fortran
routines.

4. Some class libraries often require the user to learn a strange “‘syntax’’ that is in-
ternal to the class library. The application then becomes dependent on persistent
support for that particular class library.

5. The C++ libraries achieve their parallelism by having several internal layers of
code that are not accessible to the end-user. This is problematical for several rea-
sons. First, it requires the library developer to develop and implement several lay-
ers of new computer science related concepts such as space filling curves or
complicated adaptive linked lists which slows down the development process. Sec-
ond, these extra layers of code diminish performance. Third, they make it ex-
tremely difficult for the end-user to modify the functionalities in the AMR class
library, thus restricting usage.

6. Several hundreds of man years have gone into building performance-oriented
compiler optimizations into Fortran compilers which the C++ library builder ei-
ther cannot capitalize on or has to replicate within his or her own C++ library.
Often the library will only have a few users making it impossible to invest so much
optimization-oriented effort to improve what is but one of several competing class
libraries that is attempting to do parallel AMR.

Fortran has been improving. The modern Fortran 90 standard offers several en-

hancements that support use of Fortran 90 in a nearly object-oriented fashion. Thus

the modules in Fortran 90 can be used for data encapsulation just like classes in

C++. Inheritance by composition is also possible and this is the only form of in-

heritance that seems to be needed in a large body of scientific applications, see

[47,31,32]. Besides, parallel language standards such as OpenMP and HPF-2 offer

full Fortran 90 support. Thus, one of the goals of this paper is to show how one can
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capitalize on this Fortran 90 support in OpenMP. The language-based approaches

for achieving parallel AMR have several advantages:

1. While parallelizing compilers are, in theory, slower to mature than class libraries
it is possible to devote more human resources to improving them because a good
compiler will benefit millions of users. The greater amount of human effort that
can be prudently invested in developing compiler technology can cause paralleliz-
ing compilers to, in fact, mature faster than parallel class library approaches. This
paper demonstrates clearly that parallelizing compilers that are mature enough
and sophisticated enough to support applications as complex as parallel AMR
do indeed exist.

2. There is a natural fit between our use of Fortran 90 and the reuse of old legacy
Fortran 77 codes. In fact, we show that old legacy codes can be very naturally re-
used in such a way that the legacy code executes virtually unchanged on each pro-
cessor and the parallelizing language permits one to supply an extra software
layer on top that encapsulates both the adaptive features and the parallelism.

3. All the compiler optimizations that lead to good performance become available to
the AMR application. All the clever strategies that have been implemented in the
legacy code for obtaining good on-node performance also become available to the
AMR application.

4. Unlike C++ class library-based approaches to AMR, the applications scientist
has full control over the whole AMR application. This is the old, familiar mode
in which physical scientists and engineers liked to work with AMR applications
on vector supercomputers. We show here that the same, time-tested mode of work
can be extended to parallel supercomputers.

5. Modern parallel languages offer task parallelism which permits multiple complex
applications, all of which use some form of AMR, to work together. This is dif-
ficult or impossible to express in C++ class library-based approaches for AMR
and also in MPI-based approaches for AMR.

6. Modern parallel languages permit one to take an incremental approach to paral-
lelism. Thus, as the fraction of the code that is parallelized increases, so does the
parallel performance. This is a very desirable feature and underscores the superi-
ority of language-based approaches over message passing, i.e., MPI-based, ap-
proaches.

7. When the compiler is told to ignore the parallelizing directives, the parallel AMR
code becomes a serial AMR code, thus facilitating easy debugging.

8. There exist well-defined reference standards for modern parallel languages. All
vendors usually commit to supporting those standards. Thus AMR applications
that draw on language-based approaches will be portable across parallel plat-
forms.

9. The user does not get locked into any one C++ class library coming from any one
source for doing his or her parallel AMR applications.

The basis for our approach consists of using the OpenMP parallelizing extensions

of the Fortran 90 standard to express parallel AMR. The usage of Fortran 90 in

AMR applications is discussed in Section 2. We have found efficient, scalable ways

of doing all the tasks that need to be done in a parallel AMR application. These
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include parallel construction (and destruction) of AMR hierarchies, parallel pro-
cessing of inter-grid transfers in a pre-existing AMR hierarchy and solving the
grids at any level in the AMR hierarchy in a load balanced, parallel fashion. These
advances are catalogued in Section 3. Building the AMR grid hierarchy also re-
quires having a parallel regridding capability so that serial bottlenecks can be
avoided. We have built such a parallel regridding capability and shown that it will
always result in proper coverage of secularly evolving time-dependent features.
These advances are catalogued in Section 4. Grids in AMR hierarchies are also
frequently created and destroyed making a dynamic load balancer very desirable.
We have designed an unusually efficient load balancer that is especially suited to
AMR-type applications. The load balancer is described in Section 5. Section 6
describes scalability studies for an application that solves an elliptic problem and
an application that solves a hyperbolic problem. In Section 7 we draw some
conclusions.

2. Object-oriented way of using Fortran-90 in AMR applications

For many years, scientific applications were developed from the ground-up by
individuals who rarely needed to rely on disciplined software engineering tech-
niques. Although these applications could become quite large, they evolved in a
relatively uncontrolled manner. This inhibits change, and restricts the knowledge
embedded within to a few experts. Collaboration becomes increasingly more
complex, preventing developers from sharing key features of their codes that
could increase the productivity of others. This is a path that ultimately leads to
failure as large, and important, simulation codes become too complex to manage
and extend. Although the object-oriented programming paradigm was designed to
bring greater clarity to software development this approach was never taken se-
riously by the scientific community, until recently. Languages that support ab-
straction-based programming have been developed, beginning with Simula in the
late 1960, evolving through Smalltalk, C++, Java, and many less popular lan-
guages, but none of these considered the needs of scientific applications that
Fortran addressed so well. To give but an example, even though multidimensional
arrays constitute an indispensable part of scientific computing, the C++ language
standard provides no support for multidimensional arrays and their manipulation.
The desire to serve the cause of scientific computing in C++ has, therefore,
spawned a proliferation of C++ array class libraries, almost all of which perform
poorly, all of which are non-standard and none of which inter-operates with the
other.

Realizing the new demands that scientific applications are imposing on software
development, the Fortran standardization committees (J3 and WGY5), introduced
new features into Fortran that greatly extend its capabilities. While the array-syntax
and dynamic memory management features are most familiar, many new concepts
that add abstraction modeling capabilities have been introduced. These include
modules, derived-types, recursion, use-association, generic interfaces, and (safe)
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pointers. Now, one can design scientific software where every feature of the simu-
lation can be represented using familiar abstractions. This increases clarity, safety,
and extensibility, which simplifies collaboration among scientists.

Fortran 90/95 supports features that allow one to program using the object-ori-
ented programming paradigm. While the language does not support object-oriented
programming features directly, we will see that these can be modeled in a simple way.
(Fortran 2000 will have explicit object-oriented features as part of the language
design.) This represents a major benefit for scientific programmers since they can
preserve and extend their existing codes, and develop new codes using a familiar
environment, while gaining the benefits of a new programming method that supports
scientific computation. Complex applications, such as AMR, that can only be
achieved using abstract data structures and modeling can enjoy many benefits from a
well-organized object-oriented design based on Fortran 90. We describe the design in
the following subsections.

2.1. Object-oriented structures for managing AMR hierarchies

The fundamental computational problem in AMR consists of constructing, manag-
ing and carrying out the solution process on a hierarchy of grids. This requires that we
are able to express the AMR application in terms of familiar abstractions that are
natural to the process of solving a self-adaptive grid hierarchy. Associated with each
grid is some data that is specific to the particular solution process that is being used.
The solution process applies one or more numerical algorithms to this data. Thus,
for example, if the problem is Poisson’s problem that has to be solved via a multigrid
method then the solution process might be Jacobi relaxation and the data associated
with a grid would consist of multidimensional arrays that are needed for carrying out
Jacobi relaxation. The solution techniques that benefit the most from AMR tech-
niques consist of numerical algorithms that perform some form of stencil-based
operation. Hence we focus on such algorithms here. A general level in an AMR grid
hierarchy consists of a collection of grids, each having the same resolution, that
partially or completely cover the physical domain that is of interest. We refer to each
of these grids here as a single_grid, a nomenclature that is intended to denote a grid
that is not further made up of sub-grids. The base grid is the collection of sin-
gle_grids that completely covers the computational domain. A multigrid hierarchy
formed from the base grid consists of the base grid along with all its coarsenings.
Each coarser level in the multigrid hierarchy also consists of a collection of sin-
gle_grids that completely cover the computational domain, though it may consist of
a smaller number of single_grids than those required at the base grid level. A re-
finement level in the AMR hierarchy consists of a collection of single_grids that
selectively cover just the features of interest in the physical domain. Thus the pro-
cessing of a base level grid (or its coarsenings) and the processing of a refinement
level are put on an equal footing since they both consist of processing single_grids at
a given level. All the algorithms that benefit from AMR require the levels to be
processed one after the other. Thus the fundamental computational problem in parallel
AMR consists of being able to efficiently process all the single_grids at any given level
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with optimal load balance on a given set of processors. Since each single_grid performs
stencil operations it will need to maintain consistent boundary information. Thus it
needs to be able to reference its parents, siblings and children. This is most easily
accomplished by allowing each single_grid object to have lists of its parents, siblings
and children.

Since AMR is naturally a dynamic process, we need to allow for single_grids to be
created and destroyed as needed, utilizing an additional structure to ensure that all
references are valid. Thus say, for example, that our AMR hierarchy may have a
maximum of “MAXIMUM_LEVELS” number of levels and each level may have up
to “MAXIMUM_SINGLE_GRIDS” number of single_grid objects. Fortran 90
allows us to create a derived type (like a structure in C) to represent a single_grid and
all its features as follows: Fig. 1

The single_grid type encapsulates information needed to process the solution on
the single_grid. Such information consists of data used in the solution process which
is stored as pointers to multidimensional arrays whose real dimensions will only be
allocated when a single_grid object is built. The solution process also entails inter-
polating boundary values from siblings or parents. The appropriate single_grid
numbers corresponding to single_grids that form parent, sibling and child rela-
tionships with the present single_grid are stored in the “parent, sibling, child” arrays.
This information can also be stored as linked lists but we illustrate the concepts
simply above using static data structures. It is beneficial for each single_grid to have
information that tells it what level it is built on and also what grid number it has been
assigned. This information is stored in “level” and “grid_num”. Associated with
each level in the AMR hierarchy there is a tensor product index space (i.e. a 3-tuple
in three-dimensional space) that covers it completely. It greatly simplifies inter-grid
transfers of data if each single_grid is made to contain its beginning and ending
indices in that tensor product index space. This information is stored in “level_ixmin,
level_ixmax, level_iymin, level iymax”.

When the single_grid type is placed in a module, we can associate specific routines
that act on the single_grid type. The example below shows in pseudo-code how one
defines the analogue of a C++ constructor for a single_grid type object in Fortran
90. The analogy extends to the use of “new’” and “delete” functions in a fashion that
is entirely similar to their use in C++. The constructor can be made to return a “this”
pointer that points to the object that has been constructed. The “this” pointer can
then be stored in a list of pointers so that one can keep track of the single_grid
objects that have been created.

type single_grid
integer :: level, grid num, level ixmin, level ixmax, &
level iymin, level iymax, num_parent, num _sibling, num child
integer, dimension (MAXIMUM_SINGLE_GRIDS) :: parent, sibling, child
real, dimension(:,:), pointer :: rhs, residual, defect, solution_0, solution_1
end type single_grid

Fig. 1. Defining the single_grid for a two-dimensional Poisson’s problem.
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Fig. 2 shows how one can allocate storage associated with the multidimensional
pointer variables as well as consistently initialize certain variables by modeling a
constructor.

The use of a module allows one to restrict how variables are used, and centralizes
where operations that act on those variables are defined. If such a module is used in a
main program, and variables are created from the types defined in the module, and
routines from the module modify the state of these variables, these variables are
called objects in the object-oriented programming paradigm. Below we show how a
single_grid object is built and loaded into an appropriate location in an AMR hi-
erarchy. We again use static data structures to simplify the example, but dynamic
data structures such as linked lists or ragged arrays can just as easily be used. The

module single grid module
implicit none

! define the single_grid...

! define pointer to a single grid
type single_grid ptr

type (single_grid), pointer :: sgp
end type single grid ptr

interface new
module procedure single_grid_init
end interface

interface delete
module procedure single_grid_delete
end interface

contains

subroutine single_grid_init( this, ... )

type (single grid), pointer :: this, grid
allocate (grid) ; this => grid
! Analogue to C++ constructor; allocation and initialization
! done here; code omitted....

end subroutine single_grid_init

! Other subroutines...

end module single grid module

Fig. 2. Demonstrates analogue of a C++ constructor.
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program AMR

use single_grid_module
implicit none
type (single_grid), pointer :: grid
type (single_grid ptr), dimension(MAXIMUM_LEVELS, &
MAXIMUM_SINGLE_GRIDS) :: pointers_to_grids
integer, dimension (MAXIMUM_LEVELS, &
MAXIMUM SINGLE GRIDS) :: grid is_active

grid is active (:,:) =0

call new (grid, ...)
grid is active (grid%level, grid%grid num) = 1
pointers_to_grids (grid%level, grid%grid num)%sgp => grid

end program AMR

Fig. 3. OpenMP/Fortran 90 object-oriented multi-grid parallel structured AMR.

array “‘grid_is_active” identifies active grids in the AMR hierarchy. The array
“pointers_to_grids” which is an array of pointers to single_grid type objects stores a
valid pointer to the newly created single_grid object Fig. 3.

This subsection concludes our description of how single_grid objects are defined,
created and stored in data structures that make it easy to manipulate an AMR hi-
erarchy in Fortran 90 with just as much simplicity and flexibility as one would in
C++.

2.2. Inter-grid transfer strategy

The solution techniques that benefit from AMR almost always use some form of
stencil operation. Thus a single_grid would need values for its ghost zone boundaries
from other single_grids that are at the same level and, failing that, from single_grids
at the parent level. The size and position of the ghost zone boundaries as well as the
manner of their update is specific to the algorithms being used and is always known
to the person who supplies the Fortran 77 code that encapsulates the solution al-
gorithms. We will, therefore, provide no further details on that topic here. Also, in
those regions of the physical domain where a fine grid solution is available, the fine
grid solution is usually reckoned to be superior to the coarse grid solution. Thus each
coarse single_grid may need to find the intersection region between itself and each of
its child single_grids and fill in that region with data drawn from its child sin-
gle_grids. Furthermore, when a new single_grid is created it will need to be initialized
with values drawn from the old single_grids at its own level and, failing that, from its
parent single_grids. For all these operations it is very important that each single_grid
retains consistent lists of its parent, sibling and child single_grids. It is, therefore,
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Fig. 4. Illustrating the indexing between coarse and fine single_grids.

very useful to be able to build these relationships fast. It is also very important to be
able to determine the overlap region between one single_grid and another single_grid
that may be its parent, sibling or child so that solutions can be rapidly transferred
across single_grids. Furthermore, such steps have to be carried out quite often in the
course of applying the solution process to the entire AMR hierarchy. Thus it is very
important that all these steps be fully parallelizable in order to prevent any of them
from becoming a serial bottleneck.

Fig. 4 shows a one-dimensional example where the index space of the coarse and
fine levels are shown. The indexing shown in Fig. 4 is zone-centered though any
other form of indexing can be used. It becomes clear that if a coarse single_grid has a
starting index ““/” in the coarse level’s index space then that will correspond to a
starting index of “2i — 1 in the fine level’s index space. Likewise, if a coarse sin-
gle_grid has an ending index ‘7 in the coarse level’s index space then that will
correspond to an ending index of “2i” in the fine level’s index space. Using such
simple arithmetic it is very easy to build up the parent, sibling and child relationships
for each single_grid in the AMR hierarchy even for multidimensional problems.
Also, given two single_grids that are either at the same level or are on levels that
differ from each other by one unit it now becomes trivial to determine the region of
overlap between the single_grids.

2.3. The solution step at a given level

A level can consist of multiple single_grids that either completely or incompletely
cover the physical domain. The process of updating the boundary values of a sin-
gle_grid at any level using an algorithm-specific set of inter-grid transfers has been
explained in the previous section. The process of updating the solution on all sin-
gle_grids at a given level using the pre-existing Fortran 77 code that encapsulates the
solution algorithms is done as follows:

In the code fragment from Fig. 5 “wrapper_solver_single_grid” is just a Fortran
90 wrapper subroutine for “solver_single_grid”’ which is the Fortran 77 code that
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integer :: level, igrid
type (single_grid), pointer :: this

do igrid = 1, MAXIMUM SINGLE_GRIDS
if (grid.is.active (level, igrid) == 1) then
this => pointers_to_grids(level, igrid)%sgp
call wrapper_solver single grid (this, ...)
end if
end do

Fig. 5. Preserving existing Fortran 77 code via a wrapper.

encapsulates the solution algorithms. In the do loop in Fig. 5 we simply scan all the
possible array locations, using the if condition to pick out active single_grids and
process them. Fortran 90 also allows for recursive subroutines to be defined. This
makes it possible to recursively process all levels in an AMR hierarchy.

3. Parallel processing of AMR hierarchies

As our example of a parallelizing compiler we will take the Fortran 90 compiler
on the SGI Origin 2000 which supports the OpenMP API. We will only focus on
those facets of the parallelizing compiler that we have found useful in the course of
this work. It is also worthwhile to point out that the HPF-2 standard already has
exact analogues to the OpenMP multiprocessing directives used here. Furthermore,
the HPF-2 standard requires no new extensions to the language standard to support
AMR applications. Hence this style of programming parallel AMR applications also
extends over to HPF-2. The HPF-2 standard also has other multiprocessing direc-
tives that would potentially prove very beneficial for AMR applications. Due to the
unavailability of a Fortran 90 conforming HPF-2 compiler we will not develop HPF-
related themes further in this paper.

One of the powerful multiprocessing directives available in OpenMP consists of
the PARALLEL DO construct. It says that the iterations of a Fortran DO loop are
independent and, therefore, each iteration may be done on a different processor. To
permit more precise data layout in a parallel environment the SGI compiler also has
a DISTRIBUTE directive which places sub-portions of an array on different pro-
cessors. In an early phase of this work we found the CYCLIC(1) distribution to be
very useful because it allows each successive element of an array to be laid out on
successive processors with periodic wrap-around. To complement the data distri-
bution directives the SGI compiler also has an AFFINITY clause so that each it-
eration of a parallel DO loop will only be processed by the processor that owns the
element of the target array. These three features, taken together, make a powerful
combination that allow one to distribute arrays across processors and make the
processors work on their locally owned portions of the array. Nevertheless, there is
an OpenMP standard-conforming strategy for processing a parallel loop in a fashion
where a given iteration of the loop is done by a specific processor using the DO



50 D.S. Balsara, C.D. Norton | Parallel Computing 27 (2001) 37-70

SCHEDULE construct. The SGI Origin 2000 also has a first-touch data placement
policy so that data that is allocated and initialized by a given processor will be built
on that processor’s local memory. Here we use the first-touch feature along with the
DO SCHEDULE feature mentioned above in a hitherto unanticipated fashion to
construct entire single_grids at a desired level on specific processors. The pseudo-
code is given in Fig. 6.

We ensure that the constructors for the single_grid objects at the given level in the
AMR hierarchy will be called on the processors in a precise sequence. The sequence
is so chosen with the help of a load balancer that each processor has an almost equal
amount of computational work. The load balancer is described in Section 5. This,
along with the first-touch policy, ensures that the single_grids at a given level are
built on the processors in such a fashion that each processor will have almost the
same load as the next when it tries to process the full set of single_grids that have
been allotted to it. Note too that since a processor can own more than one sin-
gle_grid there is no fundamental limit on how many single_grids can be processed at
a given level.

The next challenge is to find a strategy where the processors process the sin-
gle_grids that they themselves own. This ensures very good data locality and, even
when inter-grid transfers have to be done, it ensures that there is a minimum of off-
processor data lookup. To take inter-grid transfers in multigrid as an example, it is
always most advantageous when performing the restriction operation at the coarse
level to restrict to each coarse single_grid from its collection of child single_grids
rather than to order the operation so that the fine single_grids are restricting their
data to their parents. Similarly, it is always advantageous when carrying out a
prolongation operation at the fine level to prolong to each fine single_grid from its
collection of parent single_grids. The tremendous utility of this way of ordering the
calculation becomes apparent when one realizes that on a Distributed Shared
Memory (DSM) machine a read operation from a remote processor’s local memory
is accomplished without causing the remote processor to pause and supply the data.

integer :: level, igrid
type (single_grid), pointer :: this

I$SOMP PARALLEL DO SCHEDULE (static, 1)
!1$OMP PRIVATE (igrid, this)
!$OMP& SHARED (level, grid.is_active, pointers_to_grids)
do igrid = 1, number_of new_single grids
! Hand in data to “new” about the location where one wants
! to build a new single_grid.
call new (this, ...)
grid_is_active (level, igrid) = 1
pointers_to_grids (level, igrid)%sgp => this
end do
1ISOMP END PARALLEL DO

Fig. 6. Using OpenMP and Fortran 90 objects for parallelism.
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Thus not just is the off-processor data look-up minimized but it occurs with no
degradation in the remote processor’s performance. Thus all processing operations
on the single_grids at a given level in the AMR hierarchy are done in parallel as
shown in Fig. 7.

The pseudo-code given in Fig. 7 ensures that the processors go to work in parallel
on the collection of single_grids that they themselves own, thereby enforcing the
“owner-computes” rule. Thus efficient, load-balanced parallel performance is en-
sured. It is worthwhile to point out that the above strategy can also be used to
perform parallel input (output) operations provided the data associated with each
single_grid is read from (written to) a different disk with a different file name and a
different unit number.

Scientific computation also requires that one can carry out parallel reduction
operations on distributed data. This may be useful in say a time step calculation in a
fluid code or in parallel evaluation of the residual at a given level in a multigrid
hierarchy. OpenMP has a REDUCTION clause and its use is demonstrated in the
pseudo-code given in Fig. 8.

Scientists are also becoming increasingly interested in trying to use the collective
computational power of several multiprocessors as a Computational Power Grid
(referred to as a Grid). Grid-based computing is attractive because it potentially
opens up vast computational resources for scientists. Such a Grid would consist of
geographically distributed multiprocessors connected by a fast network. Such net-
works are characterized by very high latencies though they do have adequate
bandwidth. The availability of software tools that allow such a Grid to be used in an
efficient manner is also something of a challenge. In a timely development, software
DSM systems that implement OpenMP on a network of shared memory multipro-
cessors have recently been devised. The TreadMarks system, see [3,38], is particularly
noteworthy in this regard because it takes a very important first step towards
building a Grid-enabled OpenMP. When the above parallelization strategy is used in
a system like TreadMarks it yields a strategy for running OpenMP-based AMR

integer :: level, igrid
type (single_grid), pointer :: this

!1$OMP PARALLEL DO SCHEDULE (static, 1)
ISOMP PRIVATE (igrid, this)
1SOMP& SHARED (level, grid is active, pointers_to_grids)
do igrid = 1, MAXIMUM _SINGLE_GRIDS
if (grid_is_active (level, igrid) == 1) then
this => pointers_to_grids(level, igrid)%sgp
call wrapper solver single grid (this, ...)
end if
end do
1ISOMP END PARALLEL DO

Fig. 7. Using OpenMP and Fortran 90 objects for parallelism.
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integer :: level, igrid
real :: residual at level
type (single_grid), pointer :: this

residual_at_level = 0.0

!1$OMP PARALLEL DO SCHEDULE (static, 1)
!$OMP PRIVATE (igrid, this)
1$OMP& SHARED (level, grid_is_active, pointers_to_grids)
1$OMP& REDUCTION (MAX:residual_at_level)
do igrid = 1, MAXIMUM_SINGLE_GRIDS
if (grid_is_active (level, igrid) == 1) then
this => pointers_to_grids(level, igrid)%sgp
call wrapper _residual single_grid (this, ...)
residual_at_level = MAX (residual at_level, this%single_grid_residual)
end if
end do
!1$OMP END PARALLEL DO

Fig. 8. Using OpenMP and Fortran 90 objects for parallelism.

applications on a Grid. Computing on a Grid necessarily entails coping with the fact
that individual processors may become highly loaded by other competing applica-
tions. The AMR application should then be able to speculatively map itself to a less
loaded subset of processors. Scherer et al. [55] have shown that it is possible for an
application to adapt to a variable number of processors connected by a high latency
network provided there are natural points in the application where the application
can be mapped in a load balanced fashion to different subsets of processors. In our
OpenMP-based AMR strategy we build entire levels in parallel. Thus entire levels in
the AMR hierarchy can be built/rebuilt on different subsets of processors using the
techniques described in this section. Furthermore, when the single_grids are mapped
to different processors using the load balancer that is described in Section 5 these
levels can be built/rebuilt in an entirely load balanced fashion even in a heteroge-
neous Grid-based environment. This makes our OpenMP-based strategy for parallel
AMR very amenable to Grid-based computing. When used in this fashion the
OpenMP-based AMR application would in effect be moving data and processing
tasks to different processors in an object-component fashion.

We have thus demonstrated in this subsection that all the steps associated with
constructing entire levels of single_grids, managing them and carrying out the so-
lution process on entire levels of single_grids in an AMR hierarchy can be accom-
plished with optimal parallel efficiency when using a parallelizing compiler-based
approach.

4. Automatic grid generation

There were two very interesting features of the Berger and Oliger [22] AMR that
made it very popular. The first was the ability to automatically flag solution features
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that needed refinement. The second was the ability to cover the flagged features in a
very efficient manner with successively refined meshes. We focus briefly on both in
this section and make some comments about them as they apply to parallel AMR.

4.1. Flagging of points

The process of flagging points for further refinement is critically dependent on the
solution technique and is different for different solvers. Berger and Oliger [22] sug-
gested that refinement be done based on error estimation using Richardson ex-
trapolation. Berger and Colella [22] showed that the same technique can be
successfully used to flag solution features that need refinement in fluid flows that
have singularities in their solutions. This necessarily involves looking at two different
levels in the AMR hierarchy. That generates a certain amount of inter-grid data
transfer and, therefore, inter-processor communication. In most flow calculations
the intent is to refine singularities in fluid flows. Those singularities should be de-
tectable by examining the solution on a single level without necessarily having to
compare it with the interpolated solution from a coarser level, as is done in Rich-
ardson extrapolation. Refs. [42,43] have shown that flow singularities can indeed be
detected on a single level. This eliminates the need for inter-grid transfers when
flagging points for refinement and, therefore, reduces the inter-processor commu-
nication. Thus for several classes of flow problems it may not be necessary to resort
to Richardson extrapolation even though Richardson extrapolation is still the
method of choice when a conceptually rigorous flagging criterion is desired. Rich-
ardson extrapolation is also the method of choice in elliptic problems though there
too it might be possible to look at ratios of the second derivative to the first de-
rivative in the right hand side to detect regions that require further refinement. It is
also worthwhile to point the reader to the work of Warren et al. [60] who show that
no amount of adaptive mesh refinement can compensate for the fact that the base
level grid is not adequately refined. In Section 6 we will show that an unexpected
benefit of error estimation using Richardson extrapolation is that it helps prevent
situations where the base level grid is not adequately refined.

The algorithms that are needed for flagging points when one is applying AMR
techniques to several other systems of physical interest can also be based on looking
at the solution at just one level. For MHD problems the flagging should also be
based on the structure of the magnetic field so that Alfven pulses can be detected and
refined. The same strategy that is outlined in [42] extends over well to MHD if the
magnetic field components are also used as fields that trigger refinement. For radi-
ation hydrodynamics problems one also has to adapt the solution if the Eddington
factors change too rapidly on the computational grid, see [8]. For self-gravitating
fluid flow problems the flagging criterion is also based on evaluating whether a zone
exceeds the Jeans stability limit, see [33], but this too can be evaluated at a single level
in the AMR hierarchy. For reactive flow problems, see [41], the level of refinement
that is needed is determined by the mesh Dahmkoler number and can also be
evaluated at a single level. For problems involving particles, the processing efficiency
depends on the density of particles per grid point, see [14]. Hence, for such problems,
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the refinement is triggered by the number density of particles at a given level. Thus
for several interesting classes of physical problems it is possible to flag points for
refinement based on examining the solution at just one level and, thereby, mini-
mizing inter-processor communication.

4.2. The regridding strategy

Once points are flagged at a given level, refined grids need to be built around them
so that all the flagged points are contained within the newly built level of refined
single_grids. This is known as the regridding strategy. Berger and Rigoutsos [23] and
Bell et al. [20] presented a regridding strategy that is fast and efficient and can be
applied to each level after its flagged points are identified. The problem with applying
the regridding strategy at an entire level in a parallel environment is that the process
of parallelizing it then becomes very difficult. (However, when nested parallelism
becomes available in OpenMP compilers it will become possible to apply the re-
gridding algorithm in a scalable fashion to entire levels in the AMR hierarchy.) The
regridding strategy is fast but it can still potentially become a serial bottleneck when
running AMR applications in parallel on more than a few tens of processors. For
that reason we have found it useful to apply the regridding strategy to each of the
single_grids at a level. This then allows us to parallelize the regridding algorithm. It
also might produce more single_grids than one might have obtained if one had
applied the Berger and Rigoutsos [23] regridding algorithm to the entire level. But it
does ensure that all the flagged points are fully covered. It might be possible to merge
the newly identified single_grids after the regridding algorithm has detected where
they are to be built [53] but a parallel version of such a strategy has not been doc-
umented in the literature. The step of merging single_grids in order to increase the
vector length was held to be essential when computing on vector supercomputers, see
Berger and Colella [21], but it does not seem to provide very important benefits when
computing on a parallel, RISC processor-based supercomputer.

The essential Berger and Rigoutsos regridding strategy that we implemented on
each single_grid consisted of identifying isolated islands on each sub-portion of the
single_grid that was identified for further regridding. If isolated islands were not
found then one resorted to scanning the signature arrays along each of the dimen-
sions for inflection points, see [23]. If no inflection points were found in the signature
arrays in any of the three dimensions then we resorted to bisecting the longest di-
mension. This yields a simple but effective regridding algorithm that almost always
covers flagged points with excellent covering efficiency.

5. Load balancer

In almost all AMR applications the levels in the AMR hierarchy are processed
one after the other. The problem of load balancing an AMR application, therefore,
reduces to the problem of load balancing a level in the AMR grid hierarchy. Unless
the level is the base grid level (or any of its multigrid coarsenings) the load for each of
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the single_grids at that level keeps changing as the solution evolves. The problem of
load balancing an arbitrary level in the AMR grid hierarchy can be cast in a general
form. In this form it may also be useful for load balancing other applications that are
not considered here. Say there are a variety of computational tasks that need to be
carrried out on a parallel supercomputer. If the computational work (the load) as-
sociated with the computational tasks cannot be estimated beforehand then it is
impossible to ensure that the computational tasks, when they are distributed across
processors, can be carried out in such a way that all the processors finish in roughly
the same amount of time. But for several applications, and for most AMR appli-
cations (or at least the time-explicit ones) the work associated with processing a grid
can be estimated beforehand. Thus the problem of load balancing is essentially the
problem of distributing the computational tasks across several processors in such a
way that all the processors finish the computational tasks that have been assigned to
them at roughly the same time.

In a distributed AMR application, especially one that is based on a language-
based approach, one has an extra degree of freedom which can be used to advantage.
That degree of freedom stems from the fact that a single_grid object that is sub-
stantially larger than other single_grid objects can be distributed across a specified
subset of processors. In HPF-2 it is possible to distribute a large single_grid object on
a subset of processors without breaking it up into multiple single_grid objects. In
OpenMP, there is no analogous way to do such distributions on processor subsets
other than to explicitly break up a large single_grid object into multiple smaller
single_grid objects. Thus we assume that we have already broken up all single_grid
objects that are substantially larger than the mean single_grid object at that level into
smaller single_grid objects that are very roughly comparable in size to the mean
single_grid object. The result is that we have single_grid objects which have a range
of sizes that are within a factor of a few times of each other. We, therefore, assume
that the computational tasks that are to be balanced across processors fall in a range
where the largest load is one hundred to a few hundred percent larger than the
smallest load. In the ensuing paragraphs we show that this can be used to advantage
to achieve very good load balance across processors.

An interesting choice emerges at this point. One may claim that the loads should
all be restricted to have the same size. This possibility might arise when all the
single_grids at a refinement level are restricted to have the same size and are required
to be placed in pre-assigned locations in an index space that covers the entire re-
finement level. This is in fact one of the frequently used strategies for doing struc-
tured AMR [44]. If all single_grids at a refinement level are constrained to have the
same size, one has no opportunity for doing genuine load balancing. In the rare
event when the number of single_grids of the same size at a given level is perfectly
divisible by the total number of processors the load will be perfectly balanced. When
such a rare event does not occur a strategy that requires all single_grids to have
exactly the same size at a refinement level will be exactly out of load balance. Such
strategies also have the other disadvantage that single_grids must be put at pre-as-
signed locations in the computational domain which prevents efficient covering of
flow features. For that reason we do not require all the single_grids to have the same



56 D.S. Balsara, C.D. Norton | Parallel Computing 27 (2001) 37-70

size. Moreover, our load balancing strategy is designed so that it actually capitalizes
on this difference in sizes to achieve precise load balance! We also do not require the
number of single_grids at a given level to be strictly divisible by the number of
processors.
Ideally we wish to have some prior knowledge of how well the loads need to be
balanced. This is usually determined by:
e the number of processors on which the problem is being solved,
e the charging algorithm with which the user is being charged for the use of those
processors.
Usually, the user is charged for the maximum number of processors that s/he req-
uisitioned at the start of the run and the charging algorithm assumes that these
processors were used by the user for the duration of the run. Thus assume that we

9

run the problem on “p’” processors and the load balancer structures the loads so that
the most loaded processor takes a fraction “x”’ more time than the other processors.
The user gets charged “p(1 4 x)”” work units. But the amount of computational work
done by the user is just “(p — 1) + (1 +x)” units. Thus “(p — 1)x” units of processing
time are wasted. Thus as “p”* gets larger “x”” should get smaller. This argues for a
load balancer that improves on successive iterations so that load balancing toler-
ances that are set at run time can be met. We have designed such an iterative load
balancer.

In our load balancer the loads (i.e., the computational tasks associated with
single_grids that are going to be built at a refinement level) are first binned to the
available processors. Each bin is associated with a processor number and keeps track
of the computational tasks that have been assigned to it. It is acceptable to our al-
gorithm if the number of computational tasks (single_grids) is not perfectly divisible
by the number of processors. The bins then pair up one with the other. There are
“p(p —1)” such combinations of possible pairings in every iteration of the load
balancer. Every time the bins pair up the initial load imbalance between the two bins
is evaluated. They then scan the list of computational tasks they own and find the
unique pair of computational tasks, one in each bin, which if exchanged between the
bins will result in the maximal reduction in the load imbalance between that par-
ticular pair of bins. If two such computational tasks exist, they are swapped between
the two bins. This process is repeated for all “p(p — 1) such pairs of bins. If there
are “b” computational tasks assigned to any bin on average then a full iteration
takes “b’p(p — 1)” units of work. It is also worth pointing out that this algorithm is
eminently parallelizable so that the work done by each processor in a parallel setting
can be reduced to “b*(p — 1)” units. We show that one can reduce the load imbal-
ance to within a fraction of a percent with “b ~ 2-5 in all reasonable situations so
that the computational cost of the algorithm is actually quite low. Moreover, suc-
cessive iterations of this algorithm can be shown to result in successive improvement
of the load balance.

The order in which the bins pair up has a big impact on the convergence of the
proposed load balancer algorithm. The first strategy which suggests itself is to make
the first bin pair up with the rest of the bins in sequence, then repeat this operation
for the second bin and so on. By the time the last bin has paired up with all the bins
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we say that the algorithm has completed one iteration. The second strategy would be
to allow each bin to pair up with the bin that is a certain offset number of bins away
(the bin numbers are cyclically wrapped). Carrying out this step for all possible offset
distances completes one iteration. We have found that the second strategy is far
superior to the first. (Results from the first strategy have been shown in a conference
proceedings by Balsara and Norton [15].) The reason for this superiority is that the
former strategy only brings one bin in contact with all the rest. Should that bin have
a load that is very different from the final converged load the step of bringing it in
load balance with all the other bins is mostly wasted. The second strategy, because it
allows all the bins to come in contact with each other during an early phase of the
pairing process, circumvents the shortcoming of the first strategy. In practice we
have found the second strategy to produce load balance that is close to the converged
load balance within one iteration.

In our first example we consider 20 processors and try to load balance the
computational work associated with 25-105 computational tasks on them. The loads
associated with those computational tasks were such that the maximum load was
100% larger than the minimum load. The computational tasks had loads that ran-
domly spanned the full range of loads so that any load value within the range was
equally probable. Table 1 shows the percent load imbalance (defined as 100 times the
difference in the maximum load on any processor and the minimum load on any
processor divided by the mean load on the processors) as a function of number of
computational tasks. Up to 3 iterations were allowed and the iterations were stopped
when the load imbalance became less than 1%. The “round robin binning” column
in Table 1 shows the percent load imbalance when the computational tasks were
assigned in round robin fashion to the bins. Note that round robin binning is often
used all by itself as a load balancing strategy. We show below that that can be a
particularly bad choice. The “first iteration” column denotes the percent load im-
balance after one iteration of the load balancing algorithm. Similarly, the subsequent
columns denote percent load imbalance after two and three iterations of the load
balancing algorithm. We see clearly that simple round robin binning always pro-
duces a large load imbalance. When the computational tasks are comparable in

Table 1
Percentage load imbalance for successive iterations of the load balancer
Number of Round-robin Iteration % load imbalance
computational binning % load First Second Third
loads imbalance
25 129.686 52.416 52.416 52.416
30 110.394 48.790 43.010 43.010
35 94.406 43.065 42.950 42.950
40 39.570 8.330 8.330 8.330
50 68.835 9.558 9.049 8.433
66 68.410 0.932 - -
75 51.678 0.523 - -
90 55.226 0.225 - -

105 46.874 0.193 - -
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number to the number of processors the percent load imbalance can be in excess of
100%! Even when the number of computational tasks is three to five times the
number of processors round robin binning continues to produce about a 50% load
imbalance. This can be rather significant. After just one iteration of the load balancer
we see a dramatic reduction in the load imbalance. Subsequent iterations of the load
balancer show diminishing reductions in the load imbalance. But it is apparent that
only a very small number of iterations are needed to reduce the percent load im-
balance below the 1% limit. This is so even when the number of computational tasks
is only a very small multiple of the number of processors. It is also valuable to point
out that our load balancer is indeed stable in that the load imbalance never increases
from one iteration to the next. It is also exceedingly valuable to demonstrate that the
load balancer actually capitalizes on the fact that the computational tasks do not all
have the same load. To see that, focus on the case where 30, 50 and 90 computational
tasks have been assigned to 20 processors. If the computational tasks all had the
same load then the percent load imbalance would have been exactly 66.7%, 40% and
22.2%, respectively. Instead the load balancer beats the percent load imbalance down
to 43.0%, 8.4% and less than 1% in those three cases. This indeed represents a
dramatic improvement over round robin binning.

In our next example we illustrate how the load balancer behaves when large
numbers of processors are used and when the computational tasks have a larger
range of loads. We consider 100 processors and try to load balance the computa-
tional work associated with 125-740 computational tasks on them. The loads as-
sociated with those computational tasks were such that the maximum load was 300%
larger than the minimum load, a significant increase over the previous example. As
before, the computational tasks had loads that randomly spanned the full range of
loads. Table 2 shows the percent load imbalance (defined as in Table 1) as a function
of number of computational tasks. Up to 5 iterations were allowed and the iterations
were stopped when the load imbalance became less than 0.1%. Table 2 shows the
percent load imbalance for each of the iterations for all the computational tasks in
this example. This allows us to see all the data in quantitative form. We see again

Table 2

Percentage load imbalance for successive iterations of the load balancer
# Loads Round-robin Iteration % load imbalance

binning First Second Third Fourth Fifth

125 186.09 64.159 64.159 64.159 64.159 64.159
150 180.38 26.857 26.775 26.775 26.775 26.775
175 153.88 25.134 23.545 23.545 23.545 23.545
200 113.76 5.081 4.978 4.978 4.978 4.978
250 128.61 1.668 1.259 1.014 0.981 0.981
330 118.60 0.368 0.294 0.294 0.294 0.294
375 105.73 0.273 0.218 0.218 0.218 0.218
450 94.155 0.162 0.108 0.108 0.108 0.108
525 90.507 0.124 0.116 0.116 0.116 0.116
625 78.336 0.045 - - - -

740 81.130 0.038 - - - -
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that round robin binning performs exceedingly poorly and that our load balancer
handily beats out round robin binning. All the points made in the first example are
further borne out in the present example. By inter-comparing the converged load
imbalances in Tables 1 and 2 we also see that the final load imbalances depend only
on the ratios of the number of computational tasks to the number of processors. For
a given ratio of the number of computational tasks to the number of processors the
smallest load imbalance that can be achieved is roughly insensitive to the range of
loads assigned to the computational tasks. This is a very valuable attribute for load
balancing AMR applications since a significant range of variation in the loads may
be expected. As before, Table 2 demonstrates that our load balancer capitalizes on
the range of variation in loads! Based on the above two examples we extract the
following two practical tips on load balancing:

1. Two to three iterations are adequate for reducing the load imbalance to less than
the 1% level (if the computational tasks are such that this reduction in load im-
balance can be achieved). To reduce the variation in the load down to less than
the 1% level one usually needs to have 3-3.5 times as many computational tasks
as one has processors. This statement remains true when the biggest computation-
al task is anywhere from 100-500% larger than the smallest computational task.

2. Three to four iterations are adequate for reducing the load imbalance to less than
the 0.1% level (if the computational tasks are such that this reduction in load im-
balance can be achieved). To reduce the variation in the load down to less than the
0.1% level one usually needs to have 4.5-6.0 times as many computational tasks as
one has processors. This statement remains true when the biggest computational
task is anywhere from 100-500% larger than the smallest computational task.

All that remains is to describe how the load associated with updating a single_grid is
computed. For elliptic multigrid solvers and for time-explicit hydrodynamic and
MHD solvers the load associated with updating a single_grid is simply proportional
to the number of computational zones that belong to the single_grid. For time-im-
plicit schemes that use a dual-time stepping strategy, see [39], the load associated
with a single_grid is directly proportional to the number of computational zones that
belong to the single_grid and inversely proportional to the local Courant number
with which the single_grid had converged in a prior iteration. For time-implicit
schemes that use an exact or approximate Jacobian evaluation, see [51] and refer-
ences therein, the load associated with a single_grid will depend mostly on the
specifics of the sparse linear algebra solver, see [34]. If one is solving the problem on a
Computational Power Grid the loads will also have to be normalized by the different
speeds of the processors participating in that Grid. In most situations when solving
the problem on a traditional parallel supercomputer it is acceptable to neglect the
computational costs associated with updating the boundaries of the single_grids.
However, if one is solving the problem on a Computational Power Grid it becomes
necessary to distinguish between single_grids whose boundaries can be updated on
the parallel supercomputer itself and single_grids whose boundary update requires
communication across the network. For the latter type of single_grid it is advan-
tageous to factor in the high latencies involved in updating the boundaries into one’s
evaluation of the load.
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6. Scalability studies

In this section we apply our AMR techniques to the solution of elliptic and hy-
perbolic problems. For our elliptic problem we choose parallel, self-adaptive mul-
tigrid as an example. For our hyperbolic problem we choose time-dependent MHD
as an example. In either case illustrative information is given about the adaptive
processing of these systems. We also provide detailed scalability studies for both
these problems which show that our methods scale extremely well up to several
hundreds of processors.

6.1. Parallel self-adaptive multigrid

We chose to demonstrate self-adaptive multigrid because it is intrinsically a very
challenging computational problem to solve in a parallel environment. This is so
because one has to build entire multigrid hierarchies of the base level grid. The levels
have to be built in such a way that they can be processed efficiently. In doing this we
found it useful to map some of the coarser levels to fewer processors if the number of
zones per processor at that level dropped below acceptable thresholds. This ensures
that each processor that we do use for solving the problem at the coarser levels has
an adequate amount of work to do. It also reduces the amount of communication
that is needed in processing the coarser levels. Techniques for building base level
grids and their multigrid coarsenings were codified into the RIEMANN framework
so that we could build an entire parallel multigrid hierarchy for a given base level
grid with a single subroutine call. When processing locally refined levels it is also very
important to distinguish between interior points at a given level from boundary
points at the same level because different operations have to be performed on each of
those points. Obtaining optimal multigrid convergence rates is critically dependent
on making that distinction. We also chose to demonstrate self-adaptive multigrid
because multigrid methods are often used in CFD problems to accelerate the solu-
tion towards steady state, see [39]. Thus our demonstration has applicability that
extends beyond the simple elliptic problem demonstrated here.

As our example of an elliptic problem we focus on Poisson’s problem in this
subsection. Since the full approximation scheme (FAS) version of multigrid is fa-
vored in CFD problems, we used it in the present study. Because the full solution is
available at all levels in FAS it is also very useful for error estimation. The W-cycle
was used to process the multigrid levels because of its good convergence properties.
Three weighted Jacobi iterations were performed at each level on each of the upward
and downward passes in the W-cycle. The error in the solution was estimated by
using Richardson extrapolation. If the local error in the solution at a grid point
exceeded one part in ten thousand the code automatically flagged that grid point for
local refinement. (We recognize that the strategy of using Richardson extrapolation,
which is drawn from [22], is a little different from the 2-FMG algorithm of Bai and
Brandt [4]. Our purpose in this work is to illustrate that such adaptive multigrid
calculations can be carried out in a parallel setting and not necessarily to focus on
any particular algorithm.) The adaptive multigrid hierarchy was built up by adding
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one level of refinement at a time. Three multigrid W-cycles were applied to each pre-
existing multigrid hierarchy in order to make it converge at which point a flagging
operation was performed on the finest level. A new level of refinement was then
added to the pre-existing multigrid hierarchy as long as flagged points were detected
on the finest level of the pre-existing hierarchy. The load balancer was used to make
sure that the single_grids on the newly added level were mapped to processors in a
load balanced fashion. In this way an entire adaptively refined multigrid hierarchy
was built in a parallel environment in a fully load balanced fashion. The solution was
deemed to have converged on the adaptive multigrid hierarchy when the adaptation
criteria stopped calling for further levels of refinement to be added. The whole
procedure described above was carried out without any human intervention.

We present many pictorial results in two dimensions in this paragraph because it
allows us to make several important points. Fig. 9(a) shows the source terms that
were used. The source terms had several randomly phased Fourier components as
well as singular source terms. The latter appear as the red circle and the blue ellipse
in Fig. 9(a). The problem was initialized with Dirichlet boundary conditions on a
65 x 65 zone base level grid. Six levels of the multigrid hierarchy were automatically
built for it. Four processors were used and single_grids were built on each processor
in such a way that the physical domain was fully covered. Since the singular source
terms cause larger errors in the solution in their vicinity, the refinement is localized
around the singular source terms. This is shown in Fig. 9(b). As the entire 65 x 65
zone base level grid exceeded the threshold that we set for the Richardson extrap-
olation, the solver automatically built a 129 x 129 zone base level grid that fully
covered the physical domain at level 7. This is shown by the dark blue color in Fig.
9(b). The level 8 grid points are shown by the light blue color in Fig. 9(b). We see
that they cover most of the physical domain but not all of the physical domain. The
level 9 and level 10 grid points are shown by the yellow and red colors respectively in
Fig. 9(b). The colors for the finer levels in Fig. 9(b) are superposed on the colors for
the coarser levels. Each locally refined level is fully contained within its coarser level.
An effective resolution of 1025 x 1025 zones was reached on level 10 of the AMR
hierarchy. However, this was reached with less than 25% as many zones as would
have been needed to cover the physical domain with a uniform 1025 x 1025 zone
mesh. This illustrates the immense computational efficiency of AMR techniques. It is
also worth pointing out that 68% of the zones in the AMR hierarchy are either at
level 9 or 10. Since level 9 and 10 mesh points are not uniformly distributed in space,
it is only by an application of the load balancer to levels 9 and 10 that one can obtain
proper load balance at each of those two levels. Thus we conclude that a majority of
the computational work involved in processing parallel AMR hierarchies has to be
dynamically load balanced in parallel environments. Fig. 9(c) and (d) show color
coded images of the processors that own the single_grids at levels 9 and 10. Regions
colored dark blue are not covered by single_grids at that level. Regions that are
colored light blue, green, orange and red are covered by single_grids that are owned
by processors one, two, three and four respectively. We see that the four colors
occupy almost equal areas in Fig. 9(c) and (d). This gives us a visual indication that
the load balancer has correctly balanced the load at each of these two levels. This
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Fig. 9. Color coded image of source terms (a), AMR levels (b), processors that own level 9 (c), and level
10 (d).

problem also brings out an unexpected use for Richardson extrapolation. Because
Richardson extrapolation compares the solution on two different levels it can also
detect situations where the solution is under-resolved on an initially specified base
level grid. Thus in our example, Richardson extrapolation caused an entire
129 x 129 zone grid to be built at level 7 even though the initial problem was
specified on a 65 x 65 zone base level grid. Thus, keeping in mind the results of
Warren et al. [60], we conclude that using an error estimator that is based on
Richardson extrapolation can help overcome the fact that the base level grid is not
adequately refined. We have also run this same problem on a highly refined
1025 x 1025 zone base level grid. We were able to show that the residual, evaluated
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in the L, norm, on the adaptively refined AMR hierarchy agreed with the residual on
the highly refined base level grid, thus indicating that our method produced a so-
lution on the AMR hierarchy that was entirely comparable in quality to the solution
produced on the highly refined base level grid. Furthermore, we were able to show
that the residual on the AMR hierarchy converged at almost the same rate as the
residual on the highly refined base level grid. This proves conclusively that the AMR
hierarchy was producing the same quality of solution at the same rate as the highly
refined base level grid.

We also ran the three-dimensional version of the RIEMANN framework on a
parallel self-adaptive multigrid problem involving the solution of Poisson’s equation.
The source terms again had a combination of several randomly phased Fourier
components as well as singular source terms. Instead of using the W-cycle we chose
to use the V-cycle here. The V-cycle has somewhat slower convergence per iteration
than the W-cycle but it has the overwhelming advantage that the number of tra-
versals to the coarser levels is minimized. The coarser levels are processed on a
smaller number of processors. As the V-cycle minimizes the number of traversals to
the coarser levels it is much more scalable than the W-cycle. The scaling results are
shown in Table 3 where we show the time for processing the entire self-adaptive
multigrid hierarchy in seconds, the relative speedup and the absolute speedup as a
function of increasing number of processors. The problem was initialized on a base
level grid with 65° zones for all the runs. This scalability study is, therefore, carried
out for a fixed size problem. The error in the solution was estimated by using
Richardson extrapolation. If the local error in the solution at a grid point exceeded
one part in a thousand the code automatically flagged that grid point for local re-
finement. The code built two further levels of refinement resulting in an effective
resolution of 257° zones. A uniform grid hierarchy with 257° zones on the finest grid
would have used more than ten times as many grid points to solve this problem as
were used in the AMR hierarchy. Over 50% of the zones that were used in the final
adaptive hierarchy were in the adaptively refined levels. From Table 3 we see that up
to 16 processors the relative speedup for every doubling of processors is roughly
constant. Past 16 processors, there is a degradation in the relative speedup owing to
the fact that there is not enough on-processor work in this rather small problem
involving a 65° zone base level grid to amortize the inter-processor communication
costs. We do see, however, that the relative speedup degrades gradually which is a

Table 3
Performance results for scalability on processing an AMR hierarchy
# of processors Time (s) Relative speedup Cumulative speedup
1 170.24 - -
2 95.28 1.79 1.79
4 53.92 1.77 3.15
8 29.91 1.80 5.69
16 16.94 1.76 10.05
32 10.81 1.57 15.75

64 7.15 1.51 23.81
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Table 4
Performance results for sustained scalability on processing an AMR hierarchy
# of processors Time (s) Relative speedup Cumulative speedup
12 370.16 - (interp.) 7.87
24 196.48 1.88 14.74
43 107.95 1.82 26.83
96 66.47 1.62 43.46

very desirable feature in most practical, parallel AMR strategies. This scalability
study was carried out using a compiler that did not optimize pointer references even
though the code would have permitted such an optimization. It is hoped that the
emergence of such parallel AMR applications will cause rapid evolution in compiler
optimizations that are needed for such applications.

To demonstrate sustained scalability at large numbers of processors we ran the
three-dimensional version of the RIEMANN framework on a parallel self-adaptive
multigrid problem with a base grid of 385 x 257 x 257 zones. Poisson’s problem
with a combination of smooth and singular source terms was solved. This scalability
study was carried out for a fixed size problem, just like the previous one. The error
in the solution was estimated by using Richardson extrapolation. If the local error
in the solution at a grid point exceeded one part in ten thousand the code auto-
matically flagged that grid point for local refinement. The code built two further
levels of refinement resulting in an effective resolution of 1537 x 1025 x 1025 zones.
The scaling results are shown in Table 4 where we show the time for processing the
entire self-adaptive multigrid hierarchy in seconds and the relative speedup. We see
from Table 4 that the larger problem size has indeed made it possible to have more
on-processor work for large numbers of processors. As a result good relative
speedups are obtained with every doubling of processors all the way up to 96
processors.

6.2. Parallel self-adaptive solution of a hyperbolic problem — time-dependent M HD

In the former subsection we documented our scalability studies for an elliptic
problem that was solved with a multigrid technique. The Jacobi iteration scheme
used in that problem only required ten float point operations per zone for each
Jacobi iteration. Thus for a small number of Jacobi iterations (typically 2-4) there
were just too few float point operations per zone to amortize the communication
costs. As a result, we saw that the relative speedups were less than ideal and did drop
at larger numbers of processors. The major use of adaptive techniques, however,
arises in hyperbolic problems. The schemes used for AMR by Berger and Colella [21]
were typically higher order Godunov schemes for the solution of hyperbolic prob-
lems. Such schemes require several thousand float point operations per zone. As a
result, one is presented with substantially greater opportunities for amortizing
communication costs with on-processor work. We focus on hyperbolic problems in
this subsection.
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AMR has been carried out for the time-dependent Euler equations in [21]. Be-
cause of the emerging interest in adaptive MHD calculations in several fields of
astrophysics and space physics we turn our attention to the task of carrying out
AMR calculations for the time-dependent MHD equations. Multidimensional
schemes for MHD that avoid the deleterious effects of dimensional sweeping have
been catalogued in [7]. Such schemes were used by Balsara and Spicer [17] to achieve
a divergence-free formulation for evolving the magnetic field. Balsara and Spicer
[17] also argued that their method could be extended for AMR calculations and the
present paper is a demonstration of that fact. Further details on divergence-free
representation and evolution of magnetic fields in AMR hierarchies will be given in
a subsequent paper by Balsara. The example that we chose consists of a Mach 12
strong magnetosonic shock propagating through a magnetized plasma. The mag-
netic field direction was fully three-dimensional. The plasma contains a cloud that is
initially spherical and has an initial density that is ten times larger than that of its
ambient plasma. The shock propagates through the cloud, crushing it and thereby
raising the density of the crushed cloud material. The problem was initialized on a
64 x 64 x 96 zone base grid. Two levels of refinement were permitted. In our sim-
ulation we allowed for mechnisms in the RIEMANN framework to detect both the
presence of shocks and the presence of contact discontinuities. This was done using
the singularity detection algorithms given in [42]. The framework was asked to
adaptively refine for both types of flow features as they evolved in time. Fig. 10(a)
shows a color coded map of the density variable in the mid-plane of the compu-
tational domain when the shock has ploughed through half the cloud. Fig. 10(b)
shows a color coded map of the levels in the same plane at the same time. The blue
color in Fig. 10(b) shows the base level grid, the yellow color shows the first level of
refinement and the red color shows the second level of refinement. We see that the
code has detected the presence of shocks as well as contact discontinuities and re-
fined for both those features. The fact that the refined levels cover only a small

5.51013e-40 40,9509 5.51013e-40

(@ (b)
Fig. 10. Density (a) and levels (b) from shock cloud problem.
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fraction of the total computational domain shows the great efficiency of AMR
techniques.

We have carried out a scalability study for the above problem. In the AMR
algorithm, the regridding step can be carried out as frequently or infrequently as
one desires as long as all the features in the flow are properly captured on the
refined meshes. Berger and Colella [21] themselves recommend regridding the
AMR hierarchy once every three timesteps. In some problems where the flow
features are evolving locally without motion relative to the base level grid, the
regridding step can be invoked even less frequently. Thus the frequency of the
regridding step depends on the physics of the problem and the intuition of the
computationalist who is solving the problem. For that reason, in carrying out the
scalability study, it was decided to evolve an AMR hierarchy to a given time and
then time it for one timestep without invoking the regridding step. We note
though that the entire AMR hierarchy had been built by the parallel regridding
procedure described in Section 4 and load balanced by the load balancer described
in Section 5. A base level grid of 32 x 32 x 48 zones was used on 1 to 32 pro-
cessors. For 32 to 128 processors we used a base level grid of 64 x 64 x 96 zones.
For 128 to 256 processors we used a base level grid of 96 x 96 x 144 zones. In
each case, the number of zones in the refined levels were more than twelve times
the number of zones in the base grid level. Hence, if the problem had not been
automatically and optimally load balanced, the loss of scalability would have
shown up immediately. Table 5 shows the scalability study. We see that we
achieve nearly ideal scalability up to 192 processors. The slight degradation at 256
processors is attributable to the fact that carrying out a scalability study at 256
processors when using a 256 processor machine causes contention between the
application code and the operating system. We also note that the code used was
not tuned for the Origin 2000 and tuning the inner loops of the MHD solver (a
task we have carried out in a different setting) would have increased the Megaflops
rate by about 30%. That would not have affected our scalability study in any
significant way.

Table 5
Performance results for scalability on processing an AMR hierarchy
# of processors MFlops Relative speedup Cumulative speedup
1 94.51 - -
4 362.00 3.83 3.83
8 687.20 1.90 7.27
16 1,393.25 2.02 14.74
32 2,578.70 1.85 27.28
48 3,766.67 1.46 39.85
64 4,885.72 1.30 51.70
96 7,612.74 1.56 80.55
128 9,978.20 1.31 105.57
192 15,002.40 1.50 158.35

256 17,317.65 1.15 182.10
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. Conclusions

Based on the work reported here, we have come to the following conclusions:

. We have devised a highly scalable strategy for parallel structured AMR and im-

plemented it in the RIEMANN framework.

. Our OpenMP + Fortran 90-based strategy for parallel structured AMR favorably

exploits modern DSM hardware and software, while supporting industry-accept-
ed portable standards.

. On a machine without hardware DSM, software DSM standards such as Tread-

Marks exist which should permit us to achieve efficiencies similar to MPI.

. We have identified all the natural abstractions that are needed for processing an

AMR hierarchy. We have shown that the Fortran 90/95 standard supports all the
object-oriented features that are needed for representing these abstractions.

. We have also shown that the parallel processing of AMR hierarchies can be easily

expressed by using already existing features in the OpenMP standard.

. The automatic grid generation step that is needed in the parallel processing of

AMR hierarchies has also been shown to be parallelizable.

. We have designed a very general load balancer which capitalizes on the non-uni-

form loads that are generated in AMR applications. The load balancer is general
enough that we anticipate that it will also be useful in other applications.

. The simplicity, ease of use and extensibility of our approach demonstrates the su-

periority of language-based approaches over class library-based approaches for
structured AMR.

. The fact that these ideas have been implemented in the RIEMANN framework

means that several other applications where a serial Fortran 77 code exists can
be seamlessly extended to become highly parallel AMR applications.

Our methods can take well to complex geometries. Both the cut-cell formalism of
[2] and the composite grid approaches of [25] can be accomodated within our
framework.

Very high order schemes for CFD, such as those in [16], can also be accomodated
within our framework.

Our work suggests natural extensions to the OpenMP standard so that such
AMR calculations can be seamlessly carried out over Computational Power
Grids.

The fact that we have been able to show that parallel AMR applications can be
highly scalable and also have very good on-node processing efficiency raises the
bar for such parallel AMR applications. Subsequent parallel AMR efforts should,
therefore, view high scalability and very good on-node processing efficiency as es-
sential design targets that should be met.

It is also significant that we could achieve high scalability and very good on-node
processing efficiency in a standard-conforming fashion. The application scientist
is not required to learn a “‘syntax’ or a scripting language or advanced computer
science concepts that are unique to a specific class library. As a result s/he be-
comes independent of persistent support for that class library. S/he is also not lim-
ited by the static features of any given class library.
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15. Based on several different examples we have convincingly demonstrated that full
Fortran 77-based on-node processing efficiency is always obtained in our strategy
for parallel AMR!

16. We have been able to find parallelizable and scalable ways of implementing each
and every aspect of the AMR algorithm. As a result, there is no serial bottleneck
in our implementation. This is reflected by the fact that the RIEMANN frame-
work that incorporates these ideas scales extremely well even for large numbers
of processors!
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